Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
3.
Environ Sci Pollut Res Int ; 30(56): 118855-118870, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37922086

ABSTRACT

In recent years, there have been increasing ecological and global concerns associated to Potentially Toxic Elements (PTEs). Thus, the relevance of wild mammals as biomonitors has been globally recognised. In the present study, Cd, Pb, Hg, Zn and As concentrations were quantified in European hedgehog and badger inhabiting SW Europe, and cumulative trends in relation to age and sex were evaluated. Liver and kidney samples were collected, mineralised and PTE content was determined by ICP-MS. Zn was the most abundant element quantified in both organs (239 and 89.8 mg kg-1 for hedgehogs and 179 and 164 mg kg-1 dw for badgers). In hedgehogs, very high Hg concentration were quantified (4.35 and 15.5 mg kg-1 dw in liver and kidney), and Cd was the most abundant for badgers (4.70 and 7.61 mg kg-1 dw in liver and kidney). Positive correlations were observed for the concentrations of PTE in the organs of both species. Age-dependence increased only Cd concentration, with levels in adult kidneys being significantly higher. In this study, European hedgehog and badger were used as biomonitors for the determination of PTEs to provide current reference values in relatively non-polluted areas of SW Europe, and to enhance the use of these species for future ecotoxicological studies.


Subject(s)
Mercury , Metalloids , Mustelidae , Animals , Hedgehogs , Cadmium , Metals , Europe
4.
Foods ; 12(18)2023 Sep 11.
Article in English | MEDLINE | ID: mdl-37761106

ABSTRACT

Plastic production has grown dramatically over the years. Microplastics (MPs) are formed from the fragmentation of larger plastic debris by combining chemical, physical, and biological processes and can degrade further to form nanoplastics (NPs). Because of their size, MPs and NPs are bioavailable to many organisms and can reach humans through transport along the food chain. In addition to the risk from ingesting MPs themselves, there are risks associated with the substances they carry, such as pesticides, pathogenic microorganisms, and heavy metals, and with the additives added to plastics to improve their characteristics. In addition, bioaccumulation and biomagnification can cause a cumulative exposure effect for organisms at the top of the food chain and humans. Despite the growing scientific interest in this emerging contaminant, the potential adverse effects remain unclear. The aim of this review is to summarize the characteristics (size, shape, color, and properties) of MPs in the environment, the primary sources, and the transport pathways in various environmental compartments, and to shed more light on the ecological impact of MPs and the potential health effects on organisms and humans by identifying human exposure pathways.

5.
Cell Commun Signal ; 21(1): 245, 2023 09 20.
Article in English | MEDLINE | ID: mdl-37730576

ABSTRACT

BACKGROUND: Several studies show that natural foods are a source of compounds with anticancer properties that affect the gut microbiota and its metabolites. In the present study, we investigate the effect of a delactosed buffalo milk whey by-product (DMW) on colorectal carcinogenesis. METHODS: The effect of DMW on colorectal carcinoma (CRC) was investigated in the established mouse model of azoxymethane (AOM)-induced colon carcinoma, which closely resembles the human clinical condition of CRC. The effect of DMW on CRC immortalized cell lines was also evaluated to further identify the antineoplastic mechanism of action. RESULTS: Pretreatment of AOM-treated mice with DMW significantly (P < 0.05) reduced the percentage of mice bearing both aberrant crypt foci with more than four crypts (which are early precancerous lesions that progress to CRC) and tumors. In addition, DMW completely counteracted the effect of AOM on protein expression of caspase-9, cleaved caspase-3 and poly ADP-ribose polymerase in colonic tissue. Administration of DMW alone (i.e. without AOM) resulted in changes in the composition of the gut microbiota, leading to enrichment or depletion of genera associated with health and disease, respectively. DMW was also able to restore AOM-induced changes in specific genera of the gut microbiota. Specifically, DMW reduced the genera Atopobiaceae, Ruminococcus 1 and Lachnospiraceae XPB1014 and increased the genera Parabacteroides and Candidatus Saccharimonas, which were increased and reduced, respectively, by AOM. Blood levels of butyric acid and cancer diagnostic markers (5-methylcytidine and glycerophosphocholine), which were increased by AOM treatment, were reduced by DMW. Furthermore, DMW exerted cytotoxic effects on two human CRC cell lines (HCT116 and HT29) and these effects were associated with the induction of apoptotic signaling. CONCLUSIONS: Our results suggest that DMW exerts chemopreventive effects and restores the gut microbiota in AOM-induced CRC, and induces cytotoxic effect on CRC cells. DMW could be an important dietary supplement to support a healthy gut microbiota and reduce the prevalence of CRC in humans. Video Abstract.


Subject(s)
Colorectal Neoplasms , Whey , Humans , Animals , Mice , Buffaloes , Milk , Carcinogenesis , Colorectal Neoplasms/drug therapy , Azoxymethane/toxicity , Butyric Acid
6.
Animals (Basel) ; 13(16)2023 Aug 13.
Article in English | MEDLINE | ID: mdl-37627400

ABSTRACT

Sirtuin 1 (SIRT1) is a protein involved in aging, cell protection, and energy metabolism in mammals. Recently, SIRT1 has been intensively studied in medical oncology, but the role of SIRT1 is still controversial, as it has been proposed as both an oncogene and a tumor suppressor. The aim of this study is to investigate the expression of SIRT1 by immunohistochemistry in canine mammary tissues, and by Western blot and immunofluorescence analysis in different canine mammary cell lines. Our results showed a decrease in SIRT1 expression from normal mammary gland tissue, and from benign and well-differentiated malignant tumors (G1) to less differentiated ones (G2-G3). Furthermore, a shift in the subcellular localization of SIRT1 from the nucleus to the cytoplasm was observed in less differentiated malignant tumors. However, further studies are needed to investigate the subcellular localization of SIRT1 in canine cancer cells and the role it may play in oncogenesis in animals.

7.
Int J Mol Sci ; 24(16)2023 Aug 09.
Article in English | MEDLINE | ID: mdl-37628772

ABSTRACT

Due to the progressive ageing of the human population, the number of cancer cases is increasing. For this reason, there is an urgent need for new treatments that can prolong the lives of cancer patients or ensure them a good quality of life. Although significant progress has been made in the treatment of cancer in recent years and the survival rate of patients is increasing, limitations in the use of conventional therapies include the frequent occurrence of side effects and the development of resistance to chemotherapeutic agents. These limitations are prompting researchers to investigate whether combining natural agents with conventional drugs could have a positive therapeutic effect in cancer treatment. Several natural bioactive compounds, especially polyphenols, have been shown to be effective against cancer progression and do not exert toxic effects on healthy tissues. Many studies have investigated the possibility of combining polyphenols with conventional drugs as a novel anticancer strategy. Indeed, this combination often has synergistic benefits that increase drug efficacy and reduce adverse side effects. In this review, we provide an overview of the studies describing the synergistic effects of curcumin, a polyphenol that has been shown to have extensive cytotoxic functions against cancer cells, including combined treatment. In particular, we have described the results of recent preclinical and clinical studies exploring the pleiotropic effects of curcumin in combination with standard drugs and the potential to consider it as a promising new tool for cancer therapy.


Subject(s)
Curcumin , Drug-Related Side Effects and Adverse Reactions , Neoplasms , Humans , Curcumin/pharmacology , Curcumin/therapeutic use , Quality of Life , Combined Modality Therapy , Polyphenols/pharmacology , Polyphenols/therapeutic use , Neoplasms/drug therapy
8.
Pharmaceuticals (Basel) ; 16(7)2023 Jul 10.
Article in English | MEDLINE | ID: mdl-37513899

ABSTRACT

Canine mammary tumours (CMTs) are the most common cancer in intact female dogs. In addition to surgery, additional targeted and non-targeted therapies may offer survival benefits to these patients. Therefore, exploring new treatments for CMT is a promising area in veterinary oncology. CMT cells have an altered lipid metabolism and use the oxidation of fatty acids for their energy needs. Here we investigated the tumoricidal effects of teglicar, a reversible inhibitor of carnitine palmitoyl transferase 1A (CPT1A), the rate-limiting enzyme for fatty acid import into mitochondria, on two CMT cells, P114 and CMT-U229. Viability and apoptosis were examined in CMT cells using the crystal violet assay, trypan blue assay, and flow cytometry analysis. The expression of mediators of apoptosis signalling (e.g., caspase-9, caspase-8, and caspase-3) was assessed by quantitative real-time polymerase chain reaction and western blot analyses. Teglicar was able to decrease cell viability and induce apoptosis in P114 and CMT-U229 cells. At the molecular level, the effect of teglicar was associated with an upregulation of the mRNA expression levels of caspase-9, caspase-8, and caspase-3 and an increase in their protein levels. In summary, our results show that teglicar has a potential effect against CMTs through the induction of apoptotic cell death, making it a promising therapeutic agent against CMTs.

9.
Theriogenology ; 202: 42-50, 2023 May.
Article in English | MEDLINE | ID: mdl-36898285

ABSTRACT

The aim of this work was to evaluate the seasonal effect on the metabolomic profile of the ovarian follicle in Italian Mediterranean buffalo to unravel the causes of the reduced competence during the non-breeding season (NBS). Samples of follicular fluid, follicular cells, cumulus cells and oocytes were collected from abattoir-derived ovaries during breeding season (BS) and NBS and analyzed by 1H Nuclear Magnetic Resonance. The Orthogonal Projections to Latent Structures of the Discriminant Analysis showed clear separation into seasonal classes and Variable Importance in Projection method identified differentially abundant metabolites between seasons. Seasonal differences were recorded in metabolite content in all analyzed components suggesting that the decreased oocyte competence during NBS may be linked to alteration of several metabolic pathways. The pathway enrichment analysis revealed that differences in the metabolites between the seasons were linked to glutathione, energy generating and amino acid metabolism and phospholipid biosynthesis. The current work allows the identification of potential positive competence markers in the follicular fluid as glutathione, glutamate, lactate and choline, and negative markers like leucine, isoleucine and ß-hydroxybutyrate. These results form a major basis to develop potential strategies to optimize the follicular environment and the IVM medium to improve the competence of oocytes during the NBS.


Subject(s)
Bison , Buffaloes , Female , Animals , Seasons , Ovarian Follicle , Oocytes/metabolism , Follicular Fluid
10.
Chemosphere ; 324: 138348, 2023 May.
Article in English | MEDLINE | ID: mdl-36898440

ABSTRACT

Triclocarban (TCC), is an antimicrobial component in personal care products and it is one of the emerging contaminants since it has been detected in various environmental matrices. Its presence in human cord blood, breast milk, and maternal urine raised issues about its possible impact on development and increased concerns about the safety of daily exposure. This study aims to provide additional information about the effects of zebrafish early-life exposure to TCC on eye development and visual function. Zebrafish embryos were exposed to two concentrations of TCC (5 and 50 µg/L) for 4 days. TCC-mediated toxicity was assessed in larvae at the end of exposure and in the long term (20 days post fertilization; dpf), through different biological end-points. The experiments showed that TCC exposure influences the retinal architecture. In 4 dpf treated larvae, we found a less organized ciliary marginal zone, a decrease in the inner nuclear and inner plexiform layers, and a decrease in the retinal ganglion cell layer. Photoreceptor and inner plexiform layers showed an increase in 20 dpf larvae at lower and both concentrations, respectively. The expression levels of two genes involved in eye development (mitfb and pax6a) were both decreased at the concentration of 5 µg/L in 4 dpf larvae, and an increase in mitfb was observed in 5 µg/L-exposed 20 dpf larvae. Interestingly, 20 dpf larvae failed to discriminate between visual stimuli, demonstrating notable visual perception impairments due to compound. The results prompt us to hypothesize that early-life exposure to TCC may have severe and potentially long-term effect on zebrafish visual function.


Subject(s)
Carbanilides , Zebrafish , Animals , Female , Humans , Zebrafish/metabolism , Larva , Retina , Carbanilides/metabolism
11.
Environ Pollut ; 316(Pt 1): 120664, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36395911

ABSTRACT

Phthalic acid esters (PAEs) are chemical pollutants widely distributed in the marine environment. They can accumulate in biota, posing a risk to the marine ecosystem and humans. The aim of this study was to measure the content of PAEs in the gills and muscles of three fish species (Mugil cephalus, Diplodus annularis, and Mullus barbatus) caught along the coast of Campania (Italy), as well as to ascertain the dietary exposure to PAEs through the consumption of fish. Secondly, a preliminary insight into microplastics (MPs) pollution in this area was provided through the analysis of Mugil cephalus organs. Solid-phase extraction (SPE) and gas chromatography-mass spectrometry (GC-MS) were used for the PAEs analysis, while an Fourier-transform infrared (FTIR) microscope was used to detect MPs after a pre-digestion of the samples. Risk assessment was based on estimated daily intake (EDI) and lifetime cancer risk (LTCR). The results showed higher bioaccumulation of PAEs in Mullus barbatus than in the other two species and higher concentration in gills than in muscles. MPs (polyamide, polypropylene, and high-density polyethylene) were detected in half of the gill samples, but no particle was detected in the muscle samples of Mugil cephalus. A low carcinogenic and non-carcinogenic risk from the consumption of fish emerged, although a potential risk for the development of cancer was found in the worst-case, especially in toddlers. In conclusion, this study provides insight into PAEs pollution in the Tyrrhenian Sea (Italy), their distribution in fish with different behaviors, and the potential risk to the consumer. Moreover, the data on pollution by MPs in this area could form the basis for future studies.


Subject(s)
Phthalic Acids , Water Pollutants, Chemical , Animals , Humans , Dibutyl Phthalate/analysis , Ecosystem , Esters/analysis , Fishes , Microplastics , Phthalic Acids/analysis , Plastics , Preliminary Data , Water Pollutants, Chemical/analysis
12.
J Nat Prod ; 85(10): 2468-2473, 2022 10 28.
Article in English | MEDLINE | ID: mdl-36261887

ABSTRACT

The widespread seagrass Zostera marina contains a new diarylheptanoid heterodimer, zosterabisphenone C (1), featuring an unprecedented rearrangement of one of its benzene rings to a cyclopentenecarbonyl unit. The planar structure and absolute configuration of zosterabisphenone C were elucidated by a combination of spectroscopic (MS, ECD, and low-temperature NMR) and computational (DFT-NMR and DFT-ECD) evidence. Consistent with the previously isolated zosterabisphenones, compound 1 was selectively cytotoxic against HCT 116 adenocarcinoma colon cancer cells, reducing their viability by 73% at 10 µM (IC50 of 7.6 ± 1.1 µM). The biosynthetic origin of zosterabisphenone C (1) from an oxidative rearrangement of zosterabisphenone A (4) is proposed.


Subject(s)
Antineoplastic Agents , Colonic Neoplasms , Zosteraceae , Diarylheptanoids/pharmacology , Benzene
13.
Int J Mol Sci ; 23(15)2022 Jul 30.
Article in English | MEDLINE | ID: mdl-35955595

ABSTRACT

Recent pharmacological research on milk whey, a byproduct of the dairy industry, has identified several therapeutic properties that could be exploited in modern medicine. In the present study, we investigated the anticancer effects of whey from Mediterranean buffalo (Bubalus bubalis) milk. The antitumour effect of delactosed milk whey (DMW) was evaluated using the HCT116 xenograft mouse model of colorectal cancer (CRC). There were no discernible differences in tumour growth between treated and untreated groups. Nevertheless, haematoxylin and eosin staining of the xenograft tissues showed clearer signs of different cell death in DMW-treated mice compared to vehicle-treated mice. Detailed biochemical and molecular biological analyses revealed that DMW was able to downregulate the protein expression levels of c-myc, phospho-Histone H3 (ser 10) and p-ERK. Moreover, DMW also activated RIPK1, RIPK3, and MLKL axis in tumour tissues from xenograft mice, thus, suggesting a necroptotic effect. The necroptotic pathway was accompanied by activation of the apoptotic pathway as revealed by increased expression of both cleaved caspase-3 and PARP-1. At the molecular level, DMW-induced cell death was also associated with (i) upregulation of SIRT3, SIRT6, and PPAR-γ and (ii) downregulation of LDHA and PPAR-α. Overall, our results unveil the potential of whey as a source of biomolecules of food origin in the clinical setting of novel strategies for the treatment of CRC.


Subject(s)
Colorectal Neoplasms , Sirtuins , Animals , Apoptosis , Buffaloes/metabolism , Heterografts , Humans , Mice , Milk/chemistry , Necroptosis , Peroxisome Proliferator-Activated Receptors/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Sirtuins/metabolism , Whey/metabolism
14.
Molecules ; 27(10)2022 May 13.
Article in English | MEDLINE | ID: mdl-35630602

ABSTRACT

Huntington's disease (HD) is a dramatic neurodegenerative disorder caused by the abnormal expansion of a CAG triplet in the huntingtin gene, producing an abnormal protein. As it leads to the death of neurons in the cerebral cortex, the patients primarily present with neurological symptoms, but recently metabolic changes resulting from mitochondrial dysfunction have been identified as novel pathological features. The carnitine shuttle is a complex consisting of three enzymes whose function is to transport the long-chain fatty acids into the mitochondria. Here, its pharmacological modification was used to test the hypothesis that shifting metabolism to lipid oxidation exacerbates the HD symptoms. Behavioural and transcriptional analyses were carried out on HD Drosophila model, to evaluate the involvement of the carnitine cycle in this pathogenesis. Pharmacological inhibition of CPT1, the rate-limiting enzyme of the carnitine cycle, ameliorates the HD symptoms in Drosophila, likely acting on the expression of carnitine-related genes.


Subject(s)
Carnitine O-Palmitoyltransferase , Carnitine , Huntington Disease , Animals , Carnitine/metabolism , Carnitine O-Palmitoyltransferase/antagonists & inhibitors , Disease Models, Animal , Drosophila , Huntington Disease/drug therapy , Huntington Disease/enzymology , Phenotype
15.
Animals (Basel) ; 11(10)2021 Oct 15.
Article in English | MEDLINE | ID: mdl-34679988

ABSTRACT

Deregulation of fatty acid catabolism provides an alternative energy source to glycolysis for cancer cell survival and proliferation. The regulator enzymes of the carnitine system (CS), responsible for the transport of fatty acids across mitochondrial membranes for ß-oxidation are deregulated in tumorigenesis. Recently, we found that Carnitine Palmitoyl Transferase 1 (CPT1), a crucial regulator of CS components, is expressed and dysregulated in canine mammary tumor (CMT) tissues and cells. In this study, we examined the protein expression of the three remaining enzymes of CS (Carnitine Acylcarnitine Translocase (CACT), Carnitine Palmitoyl Transferase 2 (CPT2), Carnitine O-acetyltransferase (CrAT), in canine mammary cells and tissues by Western blot and immunohistochemistry. Protein expression of the components of CS was found in normal mammary glands and a concomitant deregulation of expression in CMT tissues that inversely correlated with the degree of tumor differentiation. Moreover, the expression and a different deregulation of CS-related proteins was also observed in CF33, CMT-U27, CMT-U309, and P114 cell lines used as in vitro model. These results demonstrate for the first time the expression of CS components in CMT tissues and cancer cells; however, further studies are needed to elucidate their roles in dogs as well.

16.
Org Lett ; 23(18): 7134-7138, 2021 09 17.
Article in English | MEDLINE | ID: mdl-34491069

ABSTRACT

Two diarylheptanoid heterodimers, zosterabisphenones A (1) and B (2), were isolated from the seagrass Zostera marina. They feature unprecedented catechol keto tautomers, stable because of steric constraints. Their structure elucidation was based on extensive low-temperature NMR studies and ECD and MS data, with the essential aid of DFT prediction of NMR and ECD spectra. Zosterabisphenone B (2) was selectively cytotoxic against the adenocarcinoma colon cancer cell line HCT116 with IC50 3.6 ± 1.1 µM at 48 h.


Subject(s)
Catechols/chemistry , Diarylheptanoids/chemistry , Zosteraceae/chemistry , Isomerism , Magnetic Resonance Spectroscopy , Molecular Structure
17.
Molecules ; 26(8)2021 Apr 12.
Article in English | MEDLINE | ID: mdl-33921289

ABSTRACT

The recent coronavirus disease 2019 (COVID-19) pandemic is a global threat for healthcare management and the economic system, and effective treatments against the pathogenic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus responsible for this disease have not yet progressed beyond the developmental phases. As drug refinement and vaccine progression require enormously broad investments of time, alternative strategies are urgently needed. In this study, we examined phytochemicals extracted from Avicennia officinalis and evaluated their potential effects against the main protease of SARS-CoV-2. The antioxidant activities of A. officinalis leaf and fruit extracts at 150 µg/mL were 95.97% and 92.48%, respectively. Furthermore, both extracts displayed low cytotoxicity levels against Artemia salina. The gas chromatography-mass spectroscopy analysis confirmed the identifies of 75 phytochemicals from both extracts, and four potent compounds, triacontane, hexacosane, methyl linoleate, and methyl palminoleate, had binding free energy values of -6.75, -6.7, -6.3, and -6.3 Kcal/mol, respectively, in complexes with the SARS-CoV-2 main protease. The active residues Cys145, Met165, Glu166, Gln189, and Arg188 in the main protease formed non-bonded interactions with the screened compounds. The root-mean-square difference (RMSD), root-mean-square fluctuations (RMSF), radius of gyration (Rg), solvent-accessible surface area (SASA), and hydrogen bond data from a molecular dynamics simulation study confirmed the docked complexes' binding rigidity in the atomistic simulated environment. However, this study's findings require in vitro and in vivo validation to ensure the possible inhibitory effects and pharmacological efficacy of the identified compounds.


Subject(s)
Avicennia/chemistry , COVID-19 Drug Treatment , Phytochemicals/therapeutic use , SARS-CoV-2/metabolism , Antioxidants/chemistry , Antioxidants/metabolism , Antioxidants/therapeutic use , Avicennia/metabolism , Binding Sites , COVID-19/pathology , COVID-19/virology , Fruit/chemistry , Fruit/metabolism , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Phenylethyl Alcohol/chemistry , Phenylethyl Alcohol/metabolism , Phenylethyl Alcohol/therapeutic use , Phenylpropionates/chemistry , Phenylpropionates/metabolism , Phenylpropionates/therapeutic use , Phytochemicals/chemistry , Phytochemicals/metabolism , Plant Leaves/chemistry , Plant Leaves/metabolism , SARS-CoV-2/isolation & purification , Viral Matrix Proteins/chemistry , Viral Matrix Proteins/metabolism
18.
Vet J ; 257: 105453, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32546357

ABSTRACT

Genetic alterations and/or epigenetic modifications occur frequently in the majority of cancer cells. In addition to playing a crucial role as promoters of tumorigenesis, these processes can also generate metabolic pathways that are different from those in normal cells. Besides the Warburg effect, an alteration in lipid metabolism is also found in cancer cells. Thus, elucidation of the regulators involved in this metabolic reprogramming might provide tools for diagnosis, prognosis, and ultimately treatment of canine mammary tumours (CMTs) in particular. One such regulator is carnitine palmitoyltransferase 1A (CPT1A), which is involved in transportation of long-chain fatty acids into the mitochondrial matrix for beta-oxidation, thereby providing an alternative pathway for the generation of energy for tumour growth and development. In this study, the canine cell lines MDCK, CMT-U309, CMT-U27, and P114 were used as in vitro models for western blot and quantitative real-time polymerase chain reaction (qRT-PCR) analyses. Furthermore, western blot and immunohistochemistry were carried out to evaluate CPT1A protein expression in the CMT specimens. The CPT1A protein and mRNA expression levels were increased in the CMT cell lines relative to their levels in normal epithelial cells. Moreover, increased CPT1A expression levels were found in the CMT tissues, being inversely correlated with the tumour differentiation grade. However, additional studies are required to further specify the role of CPT1A in CMTs.


Subject(s)
Carnitine O-Palmitoyltransferase/genetics , Dog Diseases/genetics , Mammary Neoplasms, Animal/genetics , Transcriptome , Animals , Blotting, Western/veterinary , Carnitine O-Palmitoyltransferase/metabolism , Cell Line, Tumor , Dog Diseases/metabolism , Dogs , Female , Immunohistochemistry/veterinary , Madin Darby Canine Kidney Cells , Mammary Neoplasms, Animal/metabolism
19.
Molecules ; 25(12)2020 Jun 12.
Article in English | MEDLINE | ID: mdl-32545546

ABSTRACT

Chestnut seeds are used for fresh consumption and for the industrial preparation of derivatives, such as chestnut flour. During industrial processing, large amounts of by-products are generally produced, such as leaves, flowers, shells and burs. In the present study, chestnut shells were extracted by boiling water in order to obtain polyphenol-rich extracts. Moreover, for the removal or non-phenolic compounds, a separation by preparative reverse phase chromatography in ten fractions was carried out. The richest fractions in terms of phenolic content were characterized by means of untargeted high-resolution mass spectrometric analysis together with a dedicated and customized data processing workflow. A total of 243 flavonoids, phenolic acids, proanthocyanidins and ellagitannins were tentatively identified in the five richest fractions. Due its high phenolic content (450.03 µg GAE per mg of fraction), one tumor cell line (DU 145) and one normal prostate epithelial cell line (PNT2) were exposed to increasing concentration of fraction 3 dry extract for 24, 48 and 72 h. Moreover, for DU 145 cell lines, increase of apoptotic cells and perturbation of cell cycle was demonstrated for the same extract. Those outcomes suggest that chestnut industrial by-products could be potentially employed as a source of bioresources.


Subject(s)
Fagaceae/chemistry , Nuts/chemistry , Plant Extracts/pharmacology , Antioxidants/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Flavonoids/chemistry , Humans , Male , Mass Spectrometry , Phenols/chemistry , Plant Extracts/chemistry , Polyphenols/chemistry , Prostate/drug effects , Prostatic Neoplasms/drug therapy , Seeds/chemistry
20.
Sci Rep ; 10(1): 8978, 2020 06 02.
Article in English | MEDLINE | ID: mdl-32488123

ABSTRACT

δ-Valerobetaine (δVB) is a constitutive milk metabolite with antioxidant and anti-inflammatory activities. Here, we tested the antineoplastic properties of milk δVB on human colorectal cancer cells. CCD 841 CoN (non-tumorigenic), HT-29 (p53 mutant adenocarcinoma) and LoVo (APC/RAS mutant adenocarcinoma) cells were exposed to 3 kDa milk extract, δVB (2 mM) or milk+δVB up to 72 h. Results showed a time- and dose-dependent capability of δVB to inhibit cancer cell viability, with higher potency in LoVo cells. Treatment with milk+δVB arrested cell cycle in G2/M and SubG1 phases by upregulating p21, cyclin A, cyclin B1 and p53 protein expressions. Noteworthy, δVB also increased necrosis (P < 0.01) and when used in combination with milk it improved its activity on live cell reduction (P < 0.05) and necrosis (P < 0.05). δVB-enriched milk activated caspase 3, caspase 9, Bax/Bcl-2 apoptotic pathway and reactive oxygen species (ROS) production, whereas no effects on ROS generation were observed in CCD 841 CoN cells. The altered redox homeostasis induced by milk+δVB was accompanied by upregulation of sirtuin 6 (SIRT6). SIRT6 silencing by small interfering RNA blocked autophagy and apoptosis activated by milk+δVB, unveiling the role of this sirtuin in the ROS-mediated apoptotic LoVo cell death.


Subject(s)
Adenocarcinoma/genetics , Adenocarcinoma/pathology , Antineoplastic Agents , Apoptosis/drug effects , Apoptosis/genetics , Betaine/pharmacology , Colonic Neoplasms/genetics , Colonic Neoplasms/pathology , Milk/chemistry , Animals , Autophagy/drug effects , Autophagy/genetics , Cell Cycle/drug effects , Cell Cycle/genetics , Cell Survival/drug effects , Cell Survival/genetics , Dose-Response Relationship, Drug , Humans , Reactive Oxygen Species/metabolism , Sirtuins/metabolism , Tumor Cells, Cultured , Up-Regulation/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...